GMAT Exam  >  GMAT Notes  >  Quantitative for GMAT  >  Cheat Sheet: Number Properties

Cheat Sheet: Number Properties | Quantitative for GMAT PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


Cheat Sheet: Num b er Prop erties
The Num b er Systems c hapter in tro duces ho w all n um b ers—natural, whole, in tegers, r ationals,
and irrationals—fit together, teac hes y ou k ey prop erties (factors, m ultiples, divisibilit y , p arit y),
co v ers con v ersions among fractions, decimals, and p ercen ts, and giv es y ou quic k calc ulation
to ols (digit-sum tests, mo dular arithmetic, squares/cub es) to solv e problems faster and more
accurately .
Algebra F orm ulas
This section lists k ey algebraic iden tities useful for solving problems in the Num b er S ystem.
These form ulas simplify expressions and are often tested in comp etitiv e exams.
S.No. F orm ula Description Example
1 (a+b)(a-b) =a
2
-b
2
Difference of squares
iden tit y
(5+3)(5-3) = 5
2
-3
2
=
25-9 = 16
2 (a+b)
2
=a
2
+b
2
+2ab Square of a binomial sum (4+2)
2
= 4
2
+2
2
+2(4)(2) =
16+4+16 = 36
3 (a-b)
2
=a
2
+b
2
-2ab Square of a binomial
difference
(5-2)
2
= 5
2
+2
2
-2(5)(2) =
25+4-20 = 9
4 (a+b+c)
2
=
a
2
+b
2
+c
2
+2(ab+bc+ca)
Square of a trinomial (2+3+4)
2
=
2
2
+3
2
+4
2
+2(2·3+3·4+4·2) =
4+9+16+2(6+12+8) = 81
5 a
3
+b
3
= (a+b)(a
2
-ab+b
2
) Sum of cub es 2
3
+3
3
= (2+3)(2
2
-2·3+3
2
) =
5(4-6+9) = 5·7 = 35
6 a
3
-b
3
= (a-b)(a
2
+ab+b
2
) Difference of cub es 5
3
-3
3
= (5-3)(5
2
+5·3+3
2
) =
2(25+15+9) = 2·49 = 98
7 a
3
+b
3
+c
3
-3abc = (a+b+
c)(a
2
+b
2
+c
2
-ab-bc-ca)
Sum of cub es with three
terms
If a+b+c = 0 , then
a
3
+b
3
+c
3
= 3abc
8 (a+b)
n
=a
n
+
(
n
1
)
a
n-1
b+
(
n
2
)
a
n-2
b
2
+···+b
n
Binomial expansion (a+b)
2
=a
2
+2ab+b
2
Key P oin ts: These iden tities help simplify complex express ions and solv e problems e ?icien tly .
Practice applying them to n umerical examples to build confidence.
Num b er System F orm ulas
This section co v ers form ulas related to sums, factors, and prop erties of n um b ers, whic h are
essen tial for solving quan titativ e problems in the Num b er System.
S.No. F orm ula Description Example
1 1+2+···+n =
n(n+1)
2
Sum of first n natural
n um b ers
Sum of 1 to 35 =
35·36
2
= 630
1
Page 2


Cheat Sheet: Num b er Prop erties
The Num b er Systems c hapter in tro duces ho w all n um b ers—natural, whole, in tegers, r ationals,
and irrationals—fit together, teac hes y ou k ey prop erties (factors, m ultiples, divisibilit y , p arit y),
co v ers con v ersions among fractions, decimals, and p ercen ts, and giv es y ou quic k calc ulation
to ols (digit-sum tests, mo dular arithmetic, squares/cub es) to solv e problems faster and more
accurately .
Algebra F orm ulas
This section lists k ey algebraic iden tities useful for solving problems in the Num b er S ystem.
These form ulas simplify expressions and are often tested in comp etitiv e exams.
S.No. F orm ula Description Example
1 (a+b)(a-b) =a
2
-b
2
Difference of squares
iden tit y
(5+3)(5-3) = 5
2
-3
2
=
25-9 = 16
2 (a+b)
2
=a
2
+b
2
+2ab Square of a binomial sum (4+2)
2
= 4
2
+2
2
+2(4)(2) =
16+4+16 = 36
3 (a-b)
2
=a
2
+b
2
-2ab Square of a binomial
difference
(5-2)
2
= 5
2
+2
2
-2(5)(2) =
25+4-20 = 9
4 (a+b+c)
2
=
a
2
+b
2
+c
2
+2(ab+bc+ca)
Square of a trinomial (2+3+4)
2
=
2
2
+3
2
+4
2
+2(2·3+3·4+4·2) =
4+9+16+2(6+12+8) = 81
5 a
3
+b
3
= (a+b)(a
2
-ab+b
2
) Sum of cub es 2
3
+3
3
= (2+3)(2
2
-2·3+3
2
) =
5(4-6+9) = 5·7 = 35
6 a
3
-b
3
= (a-b)(a
2
+ab+b
2
) Difference of cub es 5
3
-3
3
= (5-3)(5
2
+5·3+3
2
) =
2(25+15+9) = 2·49 = 98
7 a
3
+b
3
+c
3
-3abc = (a+b+
c)(a
2
+b
2
+c
2
-ab-bc-ca)
Sum of cub es with three
terms
If a+b+c = 0 , then
a
3
+b
3
+c
3
= 3abc
8 (a+b)
n
=a
n
+
(
n
1
)
a
n-1
b+
(
n
2
)
a
n-2
b
2
+···+b
n
Binomial expansion (a+b)
2
=a
2
+2ab+b
2
Key P oin ts: These iden tities help simplify complex express ions and solv e problems e ?icien tly .
Practice applying them to n umerical examples to build confidence.
Num b er System F orm ulas
This section co v ers form ulas related to sums, factors, and prop erties of n um b ers, whic h are
essen tial for solving quan titativ e problems in the Num b er System.
S.No. F orm ula Description Example
1 1+2+···+n =
n(n+1)
2
Sum of first n natural
n um b ers
Sum of 1 to 35 =
35·36
2
= 630
1
2 1
2
+2
2
+···+n
2
=
n(n+1)(2n+1)
6
Sum of squares of first n
natural n um b ers
Sum of squares 1 to 40 =
40·41·81
6
=
20·41·27 = 22140
3 1
3
+2
3
+···+n
3
=
[
n(n+1)
2
]
2
Sum of cub es of first n
natural n um b ers
Sum of cub es 5 to 14: First 14 =
(
14·15
2
)
2
= 11025 ; First 4 =
(
4·5
2
)
2
=
100 ; 11025-100 = 10925
4 Sum of first n o dd n um b ers = n
2
Sum of first n o dd
n um b ers
Sum of o dd n um b ers 1 to 50 (n =
25 ) = 25
2
= 625 . Alternativ e:
S
25
=
25
2
·(1+49) = 625
5 Sum of first n ev en n um b ers =
n(n+1)
Sum of first n ev en
n um b ers
Sum of ev en n um b ers 2 to 50 (n =
25 ) = 25·26 = 650
6 Highest p o w er of n in m! =
?
m
n
?
+
?
m
n
2
?
+...
Highest p o w er of a prime
in factorial
Highest p o w er of 7 in 100! =
?
100
7
?
+
?
100
49
?
= 14+2 = 16
7 Num b er of zero es in n! =
Highest p o w er of 5 in n!
T railing zero es in factorial Zero es in 23! =
?
23
5
?
= 4
8 Sum of p erm utations of n
distinct digits = (n-1)!× (sum
of digits) ×(111...n times)
Sum of all n um b ers
formed b y n digits
Sum of n um b ers using 1,3,5,7 (n =
4 , sum=16): 16· 3!· 1111 = 16· 6·
1111 = 106656
9 Num b er of factors of N =
a
p
·b
q
·c
r
= (p+1)(q +1)(r+1)
Num b er of factors
F actors of 98 = 2
1
· 7
2
: (1+ 1)(2 +
1) = 2·3 = 6
10 Sum of factors of
N =
a
p+1
-1
a-1
×
b
q+1
-1
b-1
×...
Sum of all factors
Sum of factors of 98 = 2
1
·7
2
:
2
2
-1
2-1
×
7
3
-1
7-1
= 3·57 = 171
11 Pro duct of factors of N =N
a/2
Pro duct of factors
Pro duct of factors of 98 (6 factors):
98
6/2
= 98
3
= 941192
12 If N has n factors, n um b er of
factor pairs = n/2 (or (n+1)/2
if p erfect square)
Num b er of factor pairs
F or 36 (9 factors, p erfect square):
9+1
2
= 5 pairs
13 Ev en factors of
N = 2
p
·a
q
·b
r
=p(1+q)(1+r)
Num b er of ev en factors
F or 4500 = 2
2
·3
2
·5
3
: 2·(2+1)(3+
1) = 2·3·4 = 24
14 Odd factors of
N = (1+q)(1+r)
Num b er of o dd factors
F or4500 = 2
2
·3
2
·5
3
: (2+1)(3+1) =
3·4 = 12
2
Page 3


Cheat Sheet: Num b er Prop erties
The Num b er Systems c hapter in tro duces ho w all n um b ers—natural, whole, in tegers, r ationals,
and irrationals—fit together, teac hes y ou k ey prop erties (factors, m ultiples, divisibilit y , p arit y),
co v ers con v ersions among fractions, decimals, and p ercen ts, and giv es y ou quic k calc ulation
to ols (digit-sum tests, mo dular arithmetic, squares/cub es) to solv e problems faster and more
accurately .
Algebra F orm ulas
This section lists k ey algebraic iden tities useful for solving problems in the Num b er S ystem.
These form ulas simplify expressions and are often tested in comp etitiv e exams.
S.No. F orm ula Description Example
1 (a+b)(a-b) =a
2
-b
2
Difference of squares
iden tit y
(5+3)(5-3) = 5
2
-3
2
=
25-9 = 16
2 (a+b)
2
=a
2
+b
2
+2ab Square of a binomial sum (4+2)
2
= 4
2
+2
2
+2(4)(2) =
16+4+16 = 36
3 (a-b)
2
=a
2
+b
2
-2ab Square of a binomial
difference
(5-2)
2
= 5
2
+2
2
-2(5)(2) =
25+4-20 = 9
4 (a+b+c)
2
=
a
2
+b
2
+c
2
+2(ab+bc+ca)
Square of a trinomial (2+3+4)
2
=
2
2
+3
2
+4
2
+2(2·3+3·4+4·2) =
4+9+16+2(6+12+8) = 81
5 a
3
+b
3
= (a+b)(a
2
-ab+b
2
) Sum of cub es 2
3
+3
3
= (2+3)(2
2
-2·3+3
2
) =
5(4-6+9) = 5·7 = 35
6 a
3
-b
3
= (a-b)(a
2
+ab+b
2
) Difference of cub es 5
3
-3
3
= (5-3)(5
2
+5·3+3
2
) =
2(25+15+9) = 2·49 = 98
7 a
3
+b
3
+c
3
-3abc = (a+b+
c)(a
2
+b
2
+c
2
-ab-bc-ca)
Sum of cub es with three
terms
If a+b+c = 0 , then
a
3
+b
3
+c
3
= 3abc
8 (a+b)
n
=a
n
+
(
n
1
)
a
n-1
b+
(
n
2
)
a
n-2
b
2
+···+b
n
Binomial expansion (a+b)
2
=a
2
+2ab+b
2
Key P oin ts: These iden tities help simplify complex express ions and solv e problems e ?icien tly .
Practice applying them to n umerical examples to build confidence.
Num b er System F orm ulas
This section co v ers form ulas related to sums, factors, and prop erties of n um b ers, whic h are
essen tial for solving quan titativ e problems in the Num b er System.
S.No. F orm ula Description Example
1 1+2+···+n =
n(n+1)
2
Sum of first n natural
n um b ers
Sum of 1 to 35 =
35·36
2
= 630
1
2 1
2
+2
2
+···+n
2
=
n(n+1)(2n+1)
6
Sum of squares of first n
natural n um b ers
Sum of squares 1 to 40 =
40·41·81
6
=
20·41·27 = 22140
3 1
3
+2
3
+···+n
3
=
[
n(n+1)
2
]
2
Sum of cub es of first n
natural n um b ers
Sum of cub es 5 to 14: First 14 =
(
14·15
2
)
2
= 11025 ; First 4 =
(
4·5
2
)
2
=
100 ; 11025-100 = 10925
4 Sum of first n o dd n um b ers = n
2
Sum of first n o dd
n um b ers
Sum of o dd n um b ers 1 to 50 (n =
25 ) = 25
2
= 625 . Alternativ e:
S
25
=
25
2
·(1+49) = 625
5 Sum of first n ev en n um b ers =
n(n+1)
Sum of first n ev en
n um b ers
Sum of ev en n um b ers 2 to 50 (n =
25 ) = 25·26 = 650
6 Highest p o w er of n in m! =
?
m
n
?
+
?
m
n
2
?
+...
Highest p o w er of a prime
in factorial
Highest p o w er of 7 in 100! =
?
100
7
?
+
?
100
49
?
= 14+2 = 16
7 Num b er of zero es in n! =
Highest p o w er of 5 in n!
T railing zero es in factorial Zero es in 23! =
?
23
5
?
= 4
8 Sum of p erm utations of n
distinct digits = (n-1)!× (sum
of digits) ×(111...n times)
Sum of all n um b ers
formed b y n digits
Sum of n um b ers using 1,3,5,7 (n =
4 , sum=16): 16· 3!· 1111 = 16· 6·
1111 = 106656
9 Num b er of factors of N =
a
p
·b
q
·c
r
= (p+1)(q +1)(r+1)
Num b er of factors
F actors of 98 = 2
1
· 7
2
: (1+ 1)(2 +
1) = 2·3 = 6
10 Sum of factors of
N =
a
p+1
-1
a-1
×
b
q+1
-1
b-1
×...
Sum of all factors
Sum of factors of 98 = 2
1
·7
2
:
2
2
-1
2-1
×
7
3
-1
7-1
= 3·57 = 171
11 Pro duct of factors of N =N
a/2
Pro duct of factors
Pro duct of factors of 98 (6 factors):
98
6/2
= 98
3
= 941192
12 If N has n factors, n um b er of
factor pairs = n/2 (or (n+1)/2
if p erfect square)
Num b er of factor pairs
F or 36 (9 factors, p erfect square):
9+1
2
= 5 pairs
13 Ev en factors of
N = 2
p
·a
q
·b
r
=p(1+q)(1+r)
Num b er of ev en factors
F or 4500 = 2
2
·3
2
·5
3
: 2·(2+1)(3+
1) = 2·3·4 = 24
14 Odd factors of
N = (1+q)(1+r)
Num b er of o dd factors
F or4500 = 2
2
·3
2
·5
3
: (2+1)(3+1) =
3·4 = 12
2
15 P ositiv e in tegral solutions of
X
2
-Y
2
=N
V aries b y case: Case 1:
Odd, not p erfect square:
(factors of N )/2; Case 2:
Odd, p erfect square:
[(factors of N ) - 1]/2;
Case 3: Ev en, not p erfect
square: [factors of
(N /4)]/2; Case 4: Ev en,
p erfect square: {[factors of
(N /4)] - 1}/2
F orN = 135 : 8 factors, 8/2 = 4 sol.;
N = 121 : 3 factors, (3- 1)/2 = 1 ;
N = 160 : 8 factors of 40, 8/2 = 4 ;
N = 256 : 7 factors of 64, (7-1)/2 =
3
16 Num b er of digits in
a
b
=?blog
m
(a)?+1
Num b er of digits in a
n um b er
Num b er of digits in 2
10
=
?10log
10
(2)?+1˜ 4
17 Last t w o digits of
(50n±x)
2
= last t w o digits of x
2
Last t w o digits of a square
F or 268
2
, 268 = 50·5+18 , last t w o
digits = 18
2
= 324 , so 24
18 Last t w o digits of 2
10n
: o dd
n = 24 , ev en n = 76
Last t w o digits for p o w ers
of 2
F or 2
20
(n = 2 , ev en), last t w o digits
= 76
Key P oin ts: These form ulas are practical for summing sequences, finding factors, and solving
problems in v olving factorials and p erm utations. Examples mak e them easier to apply .
T yp es of Num b ers
This section defines differen t t yp es of n um b ers, whic h are fundamen tal to understanding the
Num b er System.
S.No. T yp e Definition Examples
1 Natural Num b ers P ositiv e in tegers from 1 to
infinit y
1, 2 , 3, 4, …
2 Whole Num b ers Natural n um b ers
including 0
0, 1 , 2, 3, …
3 In tegers Num b ers without decimals
(p ositiv e, negativ e, zero)
…, - 2, -1, 0, 1, 2, …
4 Real Num b ers All n um b ers on the
n um b er line
3.14,
v
2 , -5, 0
5 Rational Num b ers Num b ers of form a/b
(b?= 0 ), includes
terminating or rep eating
decimals
3/4 = 0.75 , -7/8 = -0.875 , 2/3 =
0.666...
6 Irrational Num b ers Non-rep eating,
non-terminating decimals
p = 3.14159... ,
v
2 = 1.41421...
3
Page 4


Cheat Sheet: Num b er Prop erties
The Num b er Systems c hapter in tro duces ho w all n um b ers—natural, whole, in tegers, r ationals,
and irrationals—fit together, teac hes y ou k ey prop erties (factors, m ultiples, divisibilit y , p arit y),
co v ers con v ersions among fractions, decimals, and p ercen ts, and giv es y ou quic k calc ulation
to ols (digit-sum tests, mo dular arithmetic, squares/cub es) to solv e problems faster and more
accurately .
Algebra F orm ulas
This section lists k ey algebraic iden tities useful for solving problems in the Num b er S ystem.
These form ulas simplify expressions and are often tested in comp etitiv e exams.
S.No. F orm ula Description Example
1 (a+b)(a-b) =a
2
-b
2
Difference of squares
iden tit y
(5+3)(5-3) = 5
2
-3
2
=
25-9 = 16
2 (a+b)
2
=a
2
+b
2
+2ab Square of a binomial sum (4+2)
2
= 4
2
+2
2
+2(4)(2) =
16+4+16 = 36
3 (a-b)
2
=a
2
+b
2
-2ab Square of a binomial
difference
(5-2)
2
= 5
2
+2
2
-2(5)(2) =
25+4-20 = 9
4 (a+b+c)
2
=
a
2
+b
2
+c
2
+2(ab+bc+ca)
Square of a trinomial (2+3+4)
2
=
2
2
+3
2
+4
2
+2(2·3+3·4+4·2) =
4+9+16+2(6+12+8) = 81
5 a
3
+b
3
= (a+b)(a
2
-ab+b
2
) Sum of cub es 2
3
+3
3
= (2+3)(2
2
-2·3+3
2
) =
5(4-6+9) = 5·7 = 35
6 a
3
-b
3
= (a-b)(a
2
+ab+b
2
) Difference of cub es 5
3
-3
3
= (5-3)(5
2
+5·3+3
2
) =
2(25+15+9) = 2·49 = 98
7 a
3
+b
3
+c
3
-3abc = (a+b+
c)(a
2
+b
2
+c
2
-ab-bc-ca)
Sum of cub es with three
terms
If a+b+c = 0 , then
a
3
+b
3
+c
3
= 3abc
8 (a+b)
n
=a
n
+
(
n
1
)
a
n-1
b+
(
n
2
)
a
n-2
b
2
+···+b
n
Binomial expansion (a+b)
2
=a
2
+2ab+b
2
Key P oin ts: These iden tities help simplify complex express ions and solv e problems e ?icien tly .
Practice applying them to n umerical examples to build confidence.
Num b er System F orm ulas
This section co v ers form ulas related to sums, factors, and prop erties of n um b ers, whic h are
essen tial for solving quan titativ e problems in the Num b er System.
S.No. F orm ula Description Example
1 1+2+···+n =
n(n+1)
2
Sum of first n natural
n um b ers
Sum of 1 to 35 =
35·36
2
= 630
1
2 1
2
+2
2
+···+n
2
=
n(n+1)(2n+1)
6
Sum of squares of first n
natural n um b ers
Sum of squares 1 to 40 =
40·41·81
6
=
20·41·27 = 22140
3 1
3
+2
3
+···+n
3
=
[
n(n+1)
2
]
2
Sum of cub es of first n
natural n um b ers
Sum of cub es 5 to 14: First 14 =
(
14·15
2
)
2
= 11025 ; First 4 =
(
4·5
2
)
2
=
100 ; 11025-100 = 10925
4 Sum of first n o dd n um b ers = n
2
Sum of first n o dd
n um b ers
Sum of o dd n um b ers 1 to 50 (n =
25 ) = 25
2
= 625 . Alternativ e:
S
25
=
25
2
·(1+49) = 625
5 Sum of first n ev en n um b ers =
n(n+1)
Sum of first n ev en
n um b ers
Sum of ev en n um b ers 2 to 50 (n =
25 ) = 25·26 = 650
6 Highest p o w er of n in m! =
?
m
n
?
+
?
m
n
2
?
+...
Highest p o w er of a prime
in factorial
Highest p o w er of 7 in 100! =
?
100
7
?
+
?
100
49
?
= 14+2 = 16
7 Num b er of zero es in n! =
Highest p o w er of 5 in n!
T railing zero es in factorial Zero es in 23! =
?
23
5
?
= 4
8 Sum of p erm utations of n
distinct digits = (n-1)!× (sum
of digits) ×(111...n times)
Sum of all n um b ers
formed b y n digits
Sum of n um b ers using 1,3,5,7 (n =
4 , sum=16): 16· 3!· 1111 = 16· 6·
1111 = 106656
9 Num b er of factors of N =
a
p
·b
q
·c
r
= (p+1)(q +1)(r+1)
Num b er of factors
F actors of 98 = 2
1
· 7
2
: (1+ 1)(2 +
1) = 2·3 = 6
10 Sum of factors of
N =
a
p+1
-1
a-1
×
b
q+1
-1
b-1
×...
Sum of all factors
Sum of factors of 98 = 2
1
·7
2
:
2
2
-1
2-1
×
7
3
-1
7-1
= 3·57 = 171
11 Pro duct of factors of N =N
a/2
Pro duct of factors
Pro duct of factors of 98 (6 factors):
98
6/2
= 98
3
= 941192
12 If N has n factors, n um b er of
factor pairs = n/2 (or (n+1)/2
if p erfect square)
Num b er of factor pairs
F or 36 (9 factors, p erfect square):
9+1
2
= 5 pairs
13 Ev en factors of
N = 2
p
·a
q
·b
r
=p(1+q)(1+r)
Num b er of ev en factors
F or 4500 = 2
2
·3
2
·5
3
: 2·(2+1)(3+
1) = 2·3·4 = 24
14 Odd factors of
N = (1+q)(1+r)
Num b er of o dd factors
F or4500 = 2
2
·3
2
·5
3
: (2+1)(3+1) =
3·4 = 12
2
15 P ositiv e in tegral solutions of
X
2
-Y
2
=N
V aries b y case: Case 1:
Odd, not p erfect square:
(factors of N )/2; Case 2:
Odd, p erfect square:
[(factors of N ) - 1]/2;
Case 3: Ev en, not p erfect
square: [factors of
(N /4)]/2; Case 4: Ev en,
p erfect square: {[factors of
(N /4)] - 1}/2
F orN = 135 : 8 factors, 8/2 = 4 sol.;
N = 121 : 3 factors, (3- 1)/2 = 1 ;
N = 160 : 8 factors of 40, 8/2 = 4 ;
N = 256 : 7 factors of 64, (7-1)/2 =
3
16 Num b er of digits in
a
b
=?blog
m
(a)?+1
Num b er of digits in a
n um b er
Num b er of digits in 2
10
=
?10log
10
(2)?+1˜ 4
17 Last t w o digits of
(50n±x)
2
= last t w o digits of x
2
Last t w o digits of a square
F or 268
2
, 268 = 50·5+18 , last t w o
digits = 18
2
= 324 , so 24
18 Last t w o digits of 2
10n
: o dd
n = 24 , ev en n = 76
Last t w o digits for p o w ers
of 2
F or 2
20
(n = 2 , ev en), last t w o digits
= 76
Key P oin ts: These form ulas are practical for summing sequences, finding factors, and solving
problems in v olving factorials and p erm utations. Examples mak e them easier to apply .
T yp es of Num b ers
This section defines differen t t yp es of n um b ers, whic h are fundamen tal to understanding the
Num b er System.
S.No. T yp e Definition Examples
1 Natural Num b ers P ositiv e in tegers from 1 to
infinit y
1, 2 , 3, 4, …
2 Whole Num b ers Natural n um b ers
including 0
0, 1 , 2, 3, …
3 In tegers Num b ers without decimals
(p ositiv e, negativ e, zero)
…, - 2, -1, 0, 1, 2, …
4 Real Num b ers All n um b ers on the
n um b er line
3.14,
v
2 , -5, 0
5 Rational Num b ers Num b ers of form a/b
(b?= 0 ), includes
terminating or rep eating
decimals
3/4 = 0.75 , -7/8 = -0.875 , 2/3 =
0.666...
6 Irrational Num b ers Non-rep eating,
non-terminating decimals
p = 3.14159... ,
v
2 = 1.41421...
3
7 Complex Num b ers Num b ers of form a+bi (i
= imaginary unit)
3+4i , -2-i
8 Imaginary Num b ers Square ro ots of negativ e
n um b ers
v
-1 =i
9 Ev en Num b ers Num b ers divisible b y 2 2, 6 , 8, 14
10 Odd Num b ers Num b ers not divisible b y 2 3, 7 , 9, 15
11 Prime Num b ers Num b ers > 1 with exactly
t w o factors (1 and itself )
2, 3 , 5, 7, 11
12 Comp osite Num b ers Num b ers > 1 that are not
prime
4, 6 , 8, 10
Key P oin ts: Kno wing these t yp es helps classify n um b ers in problems and apply relev an t prop-
erties, lik e divisibilit y or prime factorization.
Divisibilit y R ules
This section pro vides rules to quic kly c hec k if a n um b er is divisible b y certain v alues, sa ving
time in calculations.
Divisor R ule Example
2 Last digit is ev en (0, 2, 4, 6, 8) 7248 (last digit 8) is divisible b y 2
3 Sum of digits divisible b y 3 123 (1+2+3=6) is divisible b y 3
4 Last t w o digits divisible b y 4 o r 00 7248 (48 ÷ 4 = 12) is divisible b y 4
5 Last digit is 0 or 5 235 (last digit 5) is divisible b y 5
6 Divisible b y b oth 2 and 3 36 (ev en and 3+6=9) is divisibl e b y 6
7 T wice last digit subtracted fr om rest
is divisible b y 7
343 (34 - 2· 3 = 28, divis ible b y 7)
8 Last three digits divisible b y 8 or 000 7248 (248 ÷ 8 = 31) is divisible b y 8
9 Sum of digits divisible b y 9 998 (9+9+8=26, not divisible b y 9 )
10 Last digit is 0 1230 (last digit 0) is divisibl e b y 10
11 Difference of sum of o dd and ev en
p osition digits is 0 or divisible b y 11
1782 (o dd: 1+8=9, ev en: 7+2=9,
9-9=0) is divisible b y 11
12 Divisible b y b oth 3 and 4 72 (72 ÷ 3 = 24, 72 ÷ 4 = 18) is
divisible b y 12
13 F our times last digit added to rest,
rep eat un til t w o-digit n um b er divisible
b y 13
104 (10 + 4· 4 = 26, divisible b y 13)
4
Page 5


Cheat Sheet: Num b er Prop erties
The Num b er Systems c hapter in tro duces ho w all n um b ers—natural, whole, in tegers, r ationals,
and irrationals—fit together, teac hes y ou k ey prop erties (factors, m ultiples, divisibilit y , p arit y),
co v ers con v ersions among fractions, decimals, and p ercen ts, and giv es y ou quic k calc ulation
to ols (digit-sum tests, mo dular arithmetic, squares/cub es) to solv e problems faster and more
accurately .
Algebra F orm ulas
This section lists k ey algebraic iden tities useful for solving problems in the Num b er S ystem.
These form ulas simplify expressions and are often tested in comp etitiv e exams.
S.No. F orm ula Description Example
1 (a+b)(a-b) =a
2
-b
2
Difference of squares
iden tit y
(5+3)(5-3) = 5
2
-3
2
=
25-9 = 16
2 (a+b)
2
=a
2
+b
2
+2ab Square of a binomial sum (4+2)
2
= 4
2
+2
2
+2(4)(2) =
16+4+16 = 36
3 (a-b)
2
=a
2
+b
2
-2ab Square of a binomial
difference
(5-2)
2
= 5
2
+2
2
-2(5)(2) =
25+4-20 = 9
4 (a+b+c)
2
=
a
2
+b
2
+c
2
+2(ab+bc+ca)
Square of a trinomial (2+3+4)
2
=
2
2
+3
2
+4
2
+2(2·3+3·4+4·2) =
4+9+16+2(6+12+8) = 81
5 a
3
+b
3
= (a+b)(a
2
-ab+b
2
) Sum of cub es 2
3
+3
3
= (2+3)(2
2
-2·3+3
2
) =
5(4-6+9) = 5·7 = 35
6 a
3
-b
3
= (a-b)(a
2
+ab+b
2
) Difference of cub es 5
3
-3
3
= (5-3)(5
2
+5·3+3
2
) =
2(25+15+9) = 2·49 = 98
7 a
3
+b
3
+c
3
-3abc = (a+b+
c)(a
2
+b
2
+c
2
-ab-bc-ca)
Sum of cub es with three
terms
If a+b+c = 0 , then
a
3
+b
3
+c
3
= 3abc
8 (a+b)
n
=a
n
+
(
n
1
)
a
n-1
b+
(
n
2
)
a
n-2
b
2
+···+b
n
Binomial expansion (a+b)
2
=a
2
+2ab+b
2
Key P oin ts: These iden tities help simplify complex express ions and solv e problems e ?icien tly .
Practice applying them to n umerical examples to build confidence.
Num b er System F orm ulas
This section co v ers form ulas related to sums, factors, and prop erties of n um b ers, whic h are
essen tial for solving quan titativ e problems in the Num b er System.
S.No. F orm ula Description Example
1 1+2+···+n =
n(n+1)
2
Sum of first n natural
n um b ers
Sum of 1 to 35 =
35·36
2
= 630
1
2 1
2
+2
2
+···+n
2
=
n(n+1)(2n+1)
6
Sum of squares of first n
natural n um b ers
Sum of squares 1 to 40 =
40·41·81
6
=
20·41·27 = 22140
3 1
3
+2
3
+···+n
3
=
[
n(n+1)
2
]
2
Sum of cub es of first n
natural n um b ers
Sum of cub es 5 to 14: First 14 =
(
14·15
2
)
2
= 11025 ; First 4 =
(
4·5
2
)
2
=
100 ; 11025-100 = 10925
4 Sum of first n o dd n um b ers = n
2
Sum of first n o dd
n um b ers
Sum of o dd n um b ers 1 to 50 (n =
25 ) = 25
2
= 625 . Alternativ e:
S
25
=
25
2
·(1+49) = 625
5 Sum of first n ev en n um b ers =
n(n+1)
Sum of first n ev en
n um b ers
Sum of ev en n um b ers 2 to 50 (n =
25 ) = 25·26 = 650
6 Highest p o w er of n in m! =
?
m
n
?
+
?
m
n
2
?
+...
Highest p o w er of a prime
in factorial
Highest p o w er of 7 in 100! =
?
100
7
?
+
?
100
49
?
= 14+2 = 16
7 Num b er of zero es in n! =
Highest p o w er of 5 in n!
T railing zero es in factorial Zero es in 23! =
?
23
5
?
= 4
8 Sum of p erm utations of n
distinct digits = (n-1)!× (sum
of digits) ×(111...n times)
Sum of all n um b ers
formed b y n digits
Sum of n um b ers using 1,3,5,7 (n =
4 , sum=16): 16· 3!· 1111 = 16· 6·
1111 = 106656
9 Num b er of factors of N =
a
p
·b
q
·c
r
= (p+1)(q +1)(r+1)
Num b er of factors
F actors of 98 = 2
1
· 7
2
: (1+ 1)(2 +
1) = 2·3 = 6
10 Sum of factors of
N =
a
p+1
-1
a-1
×
b
q+1
-1
b-1
×...
Sum of all factors
Sum of factors of 98 = 2
1
·7
2
:
2
2
-1
2-1
×
7
3
-1
7-1
= 3·57 = 171
11 Pro duct of factors of N =N
a/2
Pro duct of factors
Pro duct of factors of 98 (6 factors):
98
6/2
= 98
3
= 941192
12 If N has n factors, n um b er of
factor pairs = n/2 (or (n+1)/2
if p erfect square)
Num b er of factor pairs
F or 36 (9 factors, p erfect square):
9+1
2
= 5 pairs
13 Ev en factors of
N = 2
p
·a
q
·b
r
=p(1+q)(1+r)
Num b er of ev en factors
F or 4500 = 2
2
·3
2
·5
3
: 2·(2+1)(3+
1) = 2·3·4 = 24
14 Odd factors of
N = (1+q)(1+r)
Num b er of o dd factors
F or4500 = 2
2
·3
2
·5
3
: (2+1)(3+1) =
3·4 = 12
2
15 P ositiv e in tegral solutions of
X
2
-Y
2
=N
V aries b y case: Case 1:
Odd, not p erfect square:
(factors of N )/2; Case 2:
Odd, p erfect square:
[(factors of N ) - 1]/2;
Case 3: Ev en, not p erfect
square: [factors of
(N /4)]/2; Case 4: Ev en,
p erfect square: {[factors of
(N /4)] - 1}/2
F orN = 135 : 8 factors, 8/2 = 4 sol.;
N = 121 : 3 factors, (3- 1)/2 = 1 ;
N = 160 : 8 factors of 40, 8/2 = 4 ;
N = 256 : 7 factors of 64, (7-1)/2 =
3
16 Num b er of digits in
a
b
=?blog
m
(a)?+1
Num b er of digits in a
n um b er
Num b er of digits in 2
10
=
?10log
10
(2)?+1˜ 4
17 Last t w o digits of
(50n±x)
2
= last t w o digits of x
2
Last t w o digits of a square
F or 268
2
, 268 = 50·5+18 , last t w o
digits = 18
2
= 324 , so 24
18 Last t w o digits of 2
10n
: o dd
n = 24 , ev en n = 76
Last t w o digits for p o w ers
of 2
F or 2
20
(n = 2 , ev en), last t w o digits
= 76
Key P oin ts: These form ulas are practical for summing sequences, finding factors, and solving
problems in v olving factorials and p erm utations. Examples mak e them easier to apply .
T yp es of Num b ers
This section defines differen t t yp es of n um b ers, whic h are fundamen tal to understanding the
Num b er System.
S.No. T yp e Definition Examples
1 Natural Num b ers P ositiv e in tegers from 1 to
infinit y
1, 2 , 3, 4, …
2 Whole Num b ers Natural n um b ers
including 0
0, 1 , 2, 3, …
3 In tegers Num b ers without decimals
(p ositiv e, negativ e, zero)
…, - 2, -1, 0, 1, 2, …
4 Real Num b ers All n um b ers on the
n um b er line
3.14,
v
2 , -5, 0
5 Rational Num b ers Num b ers of form a/b
(b?= 0 ), includes
terminating or rep eating
decimals
3/4 = 0.75 , -7/8 = -0.875 , 2/3 =
0.666...
6 Irrational Num b ers Non-rep eating,
non-terminating decimals
p = 3.14159... ,
v
2 = 1.41421...
3
7 Complex Num b ers Num b ers of form a+bi (i
= imaginary unit)
3+4i , -2-i
8 Imaginary Num b ers Square ro ots of negativ e
n um b ers
v
-1 =i
9 Ev en Num b ers Num b ers divisible b y 2 2, 6 , 8, 14
10 Odd Num b ers Num b ers not divisible b y 2 3, 7 , 9, 15
11 Prime Num b ers Num b ers > 1 with exactly
t w o factors (1 and itself )
2, 3 , 5, 7, 11
12 Comp osite Num b ers Num b ers > 1 that are not
prime
4, 6 , 8, 10
Key P oin ts: Kno wing these t yp es helps classify n um b ers in problems and apply relev an t prop-
erties, lik e divisibilit y or prime factorization.
Divisibilit y R ules
This section pro vides rules to quic kly c hec k if a n um b er is divisible b y certain v alues, sa ving
time in calculations.
Divisor R ule Example
2 Last digit is ev en (0, 2, 4, 6, 8) 7248 (last digit 8) is divisible b y 2
3 Sum of digits divisible b y 3 123 (1+2+3=6) is divisible b y 3
4 Last t w o digits divisible b y 4 o r 00 7248 (48 ÷ 4 = 12) is divisible b y 4
5 Last digit is 0 or 5 235 (last digit 5) is divisible b y 5
6 Divisible b y b oth 2 and 3 36 (ev en and 3+6=9) is divisibl e b y 6
7 T wice last digit subtracted fr om rest
is divisible b y 7
343 (34 - 2· 3 = 28, divis ible b y 7)
8 Last three digits divisible b y 8 or 000 7248 (248 ÷ 8 = 31) is divisible b y 8
9 Sum of digits divisible b y 9 998 (9+9+8=26, not divisible b y 9 )
10 Last digit is 0 1230 (last digit 0) is divisibl e b y 10
11 Difference of sum of o dd and ev en
p osition digits is 0 or divisible b y 11
1782 (o dd: 1+8=9, ev en: 7+2=9,
9-9=0) is divisible b y 11
12 Divisible b y b oth 3 and 4 72 (72 ÷ 3 = 24, 72 ÷ 4 = 18) is
divisible b y 12
13 F our times last digit added to rest,
rep eat un til t w o-digit n um b er divisible
b y 13
104 (10 + 4· 4 = 26, divisible b y 13)
4
14 Divisible b y b oth 2 and 7 28 (ev en and 28 ÷ 7 = 4) is divisible
b y 14
16 Last four digits divisible b y 16 123456 (3456 ÷ 16 = 2 16) is divisible
b y 16
27 Sum of blo c ks of 3 digits (righ t to left)
divisible b y 27
123456 (123 + 456 = 579, not
divisible b y 27)
Key P oin ts: These rules help quic kly determine divisibilit y without p erforming full divis ion,
whic h is useful for factoring and simplifying calculations.
HCF and LCM
This section explains ho w to find the Highest Common F actor (HCF) and Least Com mon
Multiple (LCM) of n um b ers, along with related prop erties. The explanations for finding HCF
and LCM b y prime factorization and LCM b y long division ha v e b een simplified for clarit y .
S.No. Concept F orm ula/R ule Example
1 HCF × LCM = Pro duct
of t w o n um b ers
F or t w o n um b ers a and b ,
their HCF m ultiplied b y
their LCM equals their
pro duct
F or 42 and 70: HCF = 14, LCM
= 210, 42·70 = 14·210 = 2940
2 If N is divisible b y X and
Y with HCF(X , Y ) = 1
If a n um b er N is divisible
b y t w o n um b ers X and Y ,
and X and Y share no
common factors other
than 1, then N is divisible
b y their pro duct X·Y
If N is divisible b y 3 and 5
(HCF=1), N is d ivisible b y 15
3 HCF b y prime
factorization
Break do wn eac h n um b er
in to its prime factors (lik e
2, 3, 5). T ak e the common
prime factors with their
lo w est p o w ers and
m ultiply them to get the
HCF
F or 96 = 2
5
·3
1
, 36 = 2
2
·3
2
,
18 = 2
1
·3
2
: Common factors are
2
1
and 3
1
, so HCF = 2
1
·3
1
= 6
4 LCM b y prime
factorization
Break do wn eac h n um b er
in to its prime factors.
T ak e eac h prime factor
with its highest p o w er
across all n um b ers and
m ultiply them to get the
LCM
F or 96 = 2
5
·3
1
, 36 = 2
2
·3
2
,
18 = 2
1
·3
2
: Highest p o w ers are
2
5
and 3
2
, so LCM =
2
5
·3
2
= 32·9 = 288
5
Read More
127 videos|154 docs|111 tests

FAQs on Cheat Sheet: Number Properties - Quantitative for GMAT

1. What are the basic properties of numbers that everyone should know?
Ans. The basic properties of numbers include the commutative property (changing the order of numbers does not change the sum or product), associative property (changing the grouping of numbers does not change the sum or product), distributive property (multiplying a number by a sum is the same as multiplying each addend individually and then adding), identity property (adding zero to a number does not change it, and multiplying by one does not change it), and the property of zero (any number multiplied by zero is zero).
2. How do prime numbers differ from composite numbers?
Ans. Prime numbers are natural numbers greater than one that have no positive divisors other than one and themselves, meaning they cannot be divided evenly by any other numbers. Composite numbers, on the other hand, are natural numbers greater than one that have more than two positive divisors, meaning they can be divided evenly by numbers other than one and themselves.
3. What is the significance of even and odd numbers in mathematics?
Ans. Even numbers are integers that can be divided by two without a remainder, while odd numbers are integers that cannot be divided by two evenly. This distinction is important in various mathematical operations and properties, such as in determining the results of addition, subtraction, and multiplication. For example, the sum of two even numbers or two odd numbers is always even, while the sum of an even and an odd number is always odd.
4. Can you explain the concept of absolute value and its importance?
Ans. Absolute value is the distance of a number from zero on the number line, without considering the direction. It is denoted by two vertical bars around the number (e.g., |x|). The importance of absolute value lies in its ability to express the magnitude of a number regardless of its sign, which is particularly useful in solving equations, inequalities, and understanding real-world scenarios such as distances and differences.
5. What role do rational and irrational numbers play in mathematics?
Ans. Rational numbers are numbers that can be expressed as a fraction of two integers, where the denominator is not zero. They include integers, fractions, and terminating or repeating decimals. Irrational numbers, on the other hand, cannot be expressed as a simple fraction and have non-repeating, non-terminating decimal expansions (e.g., the square root of 2 or pi). The understanding of both types of numbers is crucial in various areas of mathematics, including algebra, geometry, and calculus, as they represent all possible values on the number line.
Related Searches

Viva Questions

,

shortcuts and tricks

,

Sample Paper

,

video lectures

,

Previous Year Questions with Solutions

,

Semester Notes

,

practice quizzes

,

past year papers

,

Cheat Sheet: Number Properties | Quantitative for GMAT

,

ppt

,

Objective type Questions

,

mock tests for examination

,

Extra Questions

,

Exam

,

Cheat Sheet: Number Properties | Quantitative for GMAT

,

Cheat Sheet: Number Properties | Quantitative for GMAT

,

pdf

,

MCQs

,

Important questions

,

Free

,

Summary

,

study material

;