JEE Exam  >  JEE Notes  >  Mathematics (Maths) for JEE Main & Advanced  >  Cheat Sheet: Complex Numbers and Quadratic Equation

Cheat Sheet: Complex Numbers and Quadratic Equation | Mathematics (Maths) for JEE Main & Advanced PDF Download

Download, print and study this document offline
Please wait while the PDF view is loading
 Page 1


1 Complex Num b er s
1.1 Key Definitions
• Complex Num b er : z = a + ib , where a (real part), b (imaginary part),
i =
v
-1 .
• Conjugate : z = a-ib .
• Mo dulus : |z| =
v
a
2
+b
2
.
• Argumen t : arg(z) = tan
-1
(
b
a
)
, adjusted for quadran t.
• P olar F orm : z = r(cos? +isin?) , where r =|z| , ? = arg(z) .
1.2 Op erations
• A ddition : (a+ib)+(c+id) = (a+c)+i(b+d) .
• Multiplication : (a+ib)(c+id) = (ac-bd)+i(ad+bc) .
• Division :
a+ib
c+id
=
(a+ib)(c-id)
c
2
+d
2
=
(ac+bd)+i(bc-ad)
c
2
+d
2
.
• Conjugate Prop erties : z
1
+z
2
= z
1
+z
2
, z
1
z
2
= z
1
·z
2
, |z
1
z
2
| =|z
1
||z
2
| .
1.3 P olar F orm and De Moivre’s Theorem
• P olar F orm : z = r(cos? +isin?) , r =|z| , ? = arg(z) .
• Multiplication : z
1
z
2
= r
1
r
2
[cos(?
1
+?
2
)+isin(?
1
+?
2
)] .
• De Moivre’s Theorem : (cos? +isin?)
n
= cos(n?)+isin(n?) .
• n -th Ro ots : z
1/n
= r
1/n
[
cos
(
?+2kp
n
)
+isin
(
?+2kp
n
)]
, k = 0,1,...,n-1 .
1
Complex	Numbers	and	Quadratic	Equations	
Cheat	Sheet
Page 2


1 Complex Num b er s
1.1 Key Definitions
• Complex Num b er : z = a + ib , where a (real part), b (imaginary part),
i =
v
-1 .
• Conjugate : z = a-ib .
• Mo dulus : |z| =
v
a
2
+b
2
.
• Argumen t : arg(z) = tan
-1
(
b
a
)
, adjusted for quadran t.
• P olar F orm : z = r(cos? +isin?) , where r =|z| , ? = arg(z) .
1.2 Op erations
• A ddition : (a+ib)+(c+id) = (a+c)+i(b+d) .
• Multiplication : (a+ib)(c+id) = (ac-bd)+i(ad+bc) .
• Division :
a+ib
c+id
=
(a+ib)(c-id)
c
2
+d
2
=
(ac+bd)+i(bc-ad)
c
2
+d
2
.
• Conjugate Prop erties : z
1
+z
2
= z
1
+z
2
, z
1
z
2
= z
1
·z
2
, |z
1
z
2
| =|z
1
||z
2
| .
1.3 P olar F orm and De Moivre’s Theorem
• P olar F orm : z = r(cos? +isin?) , r =|z| , ? = arg(z) .
• Multiplication : z
1
z
2
= r
1
r
2
[cos(?
1
+?
2
)+isin(?
1
+?
2
)] .
• De Moivre’s Theorem : (cos? +isin?)
n
= cos(n?)+isin(n?) .
• n -th Ro ots : z
1/n
= r
1/n
[
cos
(
?+2kp
n
)
+isin
(
?+2kp
n
)]
, k = 0,1,...,n-1 .
1
Complex	Numbers	and	Quadratic	Equations	
Cheat	Sheet
• Ro ots of Unit y : Solutions of z
n
= 1 , giv en b y z = cos
(
2kp
n
)
+ isin
(
2kp
n
)
,
k = 0,1,...,n-1 .
2 Quadratic Equa tions
2.1 Key Concepts
• Standard F orm : ax
2
+bx+c = 0 , a?= 0 .
• Ro ots : x =
-b±
v
b
2
-4ac
2a
, where D = b
2
-4ac (discriminan t).
• Nature of Ro ots :
– D > 0 : Real and distinct ro ots.
– D = 0 : Real and equal ro ots.
– D < 0 : Complex ro ots (x = p±iq ).
• Sum and Pro duct : Sum = -
b
a
, Pro duct =
c
a
.
• Quadratic F ormation : If ro ots are a,ß , equation is x
2
-(a+ß)x+aß = 0 .
2.2 Complex Ro ots
• If D < 0 , ro ots are x =
-b±i
v
4ac-b
2
2a
.
• Conjugate P air: If one ro ot is p+iq , other is p-iq (for real c o e?icien ts).
3 Quic k Reference T able
Concept F orm ula/Relation
Mo dulus |z| =
v
a
2
+b
2
Argumen t arg(z) = tan
-1
(
b
a
)
Euler’s F orm z = re
i?
Quadratic Ro ots x =
-b±
v
b
2
-4ac
2a
Sum of Ro ots -
b
a
Pro duct of Ro o ts
c
a
Cub e Ro ots of U nit y 1,? =-
1
2
+i
v
3
2
,?
2
=-
1
2
-i
v
3
2
, where ?
3
= 1 ,
1+? +?
2
= 0
2
Page 3


1 Complex Num b er s
1.1 Key Definitions
• Complex Num b er : z = a + ib , where a (real part), b (imaginary part),
i =
v
-1 .
• Conjugate : z = a-ib .
• Mo dulus : |z| =
v
a
2
+b
2
.
• Argumen t : arg(z) = tan
-1
(
b
a
)
, adjusted for quadran t.
• P olar F orm : z = r(cos? +isin?) , where r =|z| , ? = arg(z) .
1.2 Op erations
• A ddition : (a+ib)+(c+id) = (a+c)+i(b+d) .
• Multiplication : (a+ib)(c+id) = (ac-bd)+i(ad+bc) .
• Division :
a+ib
c+id
=
(a+ib)(c-id)
c
2
+d
2
=
(ac+bd)+i(bc-ad)
c
2
+d
2
.
• Conjugate Prop erties : z
1
+z
2
= z
1
+z
2
, z
1
z
2
= z
1
·z
2
, |z
1
z
2
| =|z
1
||z
2
| .
1.3 P olar F orm and De Moivre’s Theorem
• P olar F orm : z = r(cos? +isin?) , r =|z| , ? = arg(z) .
• Multiplication : z
1
z
2
= r
1
r
2
[cos(?
1
+?
2
)+isin(?
1
+?
2
)] .
• De Moivre’s Theorem : (cos? +isin?)
n
= cos(n?)+isin(n?) .
• n -th Ro ots : z
1/n
= r
1/n
[
cos
(
?+2kp
n
)
+isin
(
?+2kp
n
)]
, k = 0,1,...,n-1 .
1
Complex	Numbers	and	Quadratic	Equations	
Cheat	Sheet
• Ro ots of Unit y : Solutions of z
n
= 1 , giv en b y z = cos
(
2kp
n
)
+ isin
(
2kp
n
)
,
k = 0,1,...,n-1 .
2 Quadratic Equa tions
2.1 Key Concepts
• Standard F orm : ax
2
+bx+c = 0 , a?= 0 .
• Ro ots : x =
-b±
v
b
2
-4ac
2a
, where D = b
2
-4ac (discriminan t).
• Nature of Ro ots :
– D > 0 : Real and distinct ro ots.
– D = 0 : Real and equal ro ots.
– D < 0 : Complex ro ots (x = p±iq ).
• Sum and Pro duct : Sum = -
b
a
, Pro duct =
c
a
.
• Quadratic F ormation : If ro ots are a,ß , equation is x
2
-(a+ß)x+aß = 0 .
2.2 Complex Ro ots
• If D < 0 , ro ots are x =
-b±i
v
4ac-b
2
2a
.
• Conjugate P air: If one ro ot is p+iq , other is p-iq (for real c o e?icien ts).
3 Quic k Reference T able
Concept F orm ula/Relation
Mo dulus |z| =
v
a
2
+b
2
Argumen t arg(z) = tan
-1
(
b
a
)
Euler’s F orm z = re
i?
Quadratic Ro ots x =
-b±
v
b
2
-4ac
2a
Sum of Ro ots -
b
a
Pro duct of Ro o ts
c
a
Cub e Ro ots of U nit y 1,? =-
1
2
+i
v
3
2
,?
2
=-
1
2
-i
v
3
2
, where ?
3
= 1 ,
1+? +?
2
= 0
2
4 Solv ed Example s
4.1 Example 1: Complex Num b er Op erations
Problem : F or z
1
= 3+4i , z
2
= 1-2i , find z
1
+z
2
and z
1
z
2
.
Solution :
• A ddition: z
1
+z
2
= (3+4i)+(1-2i) = (3+1)+(4-2)i = 4+2i .
• Multiplication: z
1
z
2
= (3+4i)(1-2i) = 3·1+3·(-2i)+4i·1+4i·(-2i) =
3-6i+4i-8i
2
= 3-2i-8(-1) = 11-2i .
Answ er : 4+2i , 11-2i .
4.2 Example 2: Mo dulus and Argumen t
Problem : Find the mo dulus and argumen t of z =-1+i .
Solution :
• Mo dulus: |z| =
v
(-1)
2
+1
2
=
v
2 .
• Argumen t: ? = tan
-1
(
1
-1
)
= tan
-1
(-1) = -
p
4
. Since z is in 2nd quadran t,
arg(z) = p-
p
4
=
3p
4
.
Answ er : |z| =
v
2 , arg(z) =
3p
4
.
4.3 Example 3: De Moivre’s Theorem
Problem : Find (1+i)
4
using De Moivre’s theorem.
Solution :
• P olar form: 1+i =
v
2
(
cos
p
4
+isin
p
4
)
.
• (1+i)
4
= (
v
2)
4
(
cos
p
4
+isin
p
4
)
4
= 4(cosp +isinp) = 4(-1+0i) =-4 .
Answ er : -4 .
4.4 Example 4: Quadratic Equation Ro ots
Problem : Solv e 2x
2
-4x+3 = 0 . Find nature and ro ots.
Solution :
• Discriminan t: D = (-4)
2
-4·2·3 = 16-24 =-8 .
• Nature: D < 0 , complex ro o ts.
• Ro ots: x =
4±
v
-8
4
=
4±2i
v
2
4
= 1±i
v
2
2
.
Answ er : Complex ro ots, 1+i
v
2
2
, 1-i
v
2
2
.
3
Page 4


1 Complex Num b er s
1.1 Key Definitions
• Complex Num b er : z = a + ib , where a (real part), b (imaginary part),
i =
v
-1 .
• Conjugate : z = a-ib .
• Mo dulus : |z| =
v
a
2
+b
2
.
• Argumen t : arg(z) = tan
-1
(
b
a
)
, adjusted for quadran t.
• P olar F orm : z = r(cos? +isin?) , where r =|z| , ? = arg(z) .
1.2 Op erations
• A ddition : (a+ib)+(c+id) = (a+c)+i(b+d) .
• Multiplication : (a+ib)(c+id) = (ac-bd)+i(ad+bc) .
• Division :
a+ib
c+id
=
(a+ib)(c-id)
c
2
+d
2
=
(ac+bd)+i(bc-ad)
c
2
+d
2
.
• Conjugate Prop erties : z
1
+z
2
= z
1
+z
2
, z
1
z
2
= z
1
·z
2
, |z
1
z
2
| =|z
1
||z
2
| .
1.3 P olar F orm and De Moivre’s Theorem
• P olar F orm : z = r(cos? +isin?) , r =|z| , ? = arg(z) .
• Multiplication : z
1
z
2
= r
1
r
2
[cos(?
1
+?
2
)+isin(?
1
+?
2
)] .
• De Moivre’s Theorem : (cos? +isin?)
n
= cos(n?)+isin(n?) .
• n -th Ro ots : z
1/n
= r
1/n
[
cos
(
?+2kp
n
)
+isin
(
?+2kp
n
)]
, k = 0,1,...,n-1 .
1
Complex	Numbers	and	Quadratic	Equations	
Cheat	Sheet
• Ro ots of Unit y : Solutions of z
n
= 1 , giv en b y z = cos
(
2kp
n
)
+ isin
(
2kp
n
)
,
k = 0,1,...,n-1 .
2 Quadratic Equa tions
2.1 Key Concepts
• Standard F orm : ax
2
+bx+c = 0 , a?= 0 .
• Ro ots : x =
-b±
v
b
2
-4ac
2a
, where D = b
2
-4ac (discriminan t).
• Nature of Ro ots :
– D > 0 : Real and distinct ro ots.
– D = 0 : Real and equal ro ots.
– D < 0 : Complex ro ots (x = p±iq ).
• Sum and Pro duct : Sum = -
b
a
, Pro duct =
c
a
.
• Quadratic F ormation : If ro ots are a,ß , equation is x
2
-(a+ß)x+aß = 0 .
2.2 Complex Ro ots
• If D < 0 , ro ots are x =
-b±i
v
4ac-b
2
2a
.
• Conjugate P air: If one ro ot is p+iq , other is p-iq (for real c o e?icien ts).
3 Quic k Reference T able
Concept F orm ula/Relation
Mo dulus |z| =
v
a
2
+b
2
Argumen t arg(z) = tan
-1
(
b
a
)
Euler’s F orm z = re
i?
Quadratic Ro ots x =
-b±
v
b
2
-4ac
2a
Sum of Ro ots -
b
a
Pro duct of Ro o ts
c
a
Cub e Ro ots of U nit y 1,? =-
1
2
+i
v
3
2
,?
2
=-
1
2
-i
v
3
2
, where ?
3
= 1 ,
1+? +?
2
= 0
2
4 Solv ed Example s
4.1 Example 1: Complex Num b er Op erations
Problem : F or z
1
= 3+4i , z
2
= 1-2i , find z
1
+z
2
and z
1
z
2
.
Solution :
• A ddition: z
1
+z
2
= (3+4i)+(1-2i) = (3+1)+(4-2)i = 4+2i .
• Multiplication: z
1
z
2
= (3+4i)(1-2i) = 3·1+3·(-2i)+4i·1+4i·(-2i) =
3-6i+4i-8i
2
= 3-2i-8(-1) = 11-2i .
Answ er : 4+2i , 11-2i .
4.2 Example 2: Mo dulus and Argumen t
Problem : Find the mo dulus and argumen t of z =-1+i .
Solution :
• Mo dulus: |z| =
v
(-1)
2
+1
2
=
v
2 .
• Argumen t: ? = tan
-1
(
1
-1
)
= tan
-1
(-1) = -
p
4
. Since z is in 2nd quadran t,
arg(z) = p-
p
4
=
3p
4
.
Answ er : |z| =
v
2 , arg(z) =
3p
4
.
4.3 Example 3: De Moivre’s Theorem
Problem : Find (1+i)
4
using De Moivre’s theorem.
Solution :
• P olar form: 1+i =
v
2
(
cos
p
4
+isin
p
4
)
.
• (1+i)
4
= (
v
2)
4
(
cos
p
4
+isin
p
4
)
4
= 4(cosp +isinp) = 4(-1+0i) =-4 .
Answ er : -4 .
4.4 Example 4: Quadratic Equation Ro ots
Problem : Solv e 2x
2
-4x+3 = 0 . Find nature and ro ots.
Solution :
• Discriminan t: D = (-4)
2
-4·2·3 = 16-24 =-8 .
• Nature: D < 0 , complex ro o ts.
• Ro ots: x =
4±
v
-8
4
=
4±2i
v
2
4
= 1±i
v
2
2
.
Answ er : Complex ro ots, 1+i
v
2
2
, 1-i
v
2
2
.
3
4.5 Example 5: Cub e Ro ots of Unit y
Problem : Find the cub e ro ots of unit y and v erify 1+? +?
2
= 0 .
Solution :
• Cub e ro ots of 1: Solv e z
3
= 1 . Ro ots: z = 1,? = e
i
2p
3
= -
1
2
+ i
v
3
2
, ?
2
=
e
i
4p
3
=-
1
2
-i
v
3
2
.
• Sum: 1+? +?
2
= 1+
(
-
1
2
+i
v
3
2
)
+
(
-
1
2
-i
v
3
2
)
= 1-
1
2
-
1
2
+0i = 0 .
Answ er : Ro ots: 1,-
1
2
±i
v
3
2
, sum = 0.
4
Read More
176 videos|585 docs|160 tests

FAQs on Cheat Sheet: Complex Numbers and Quadratic Equation - Mathematics (Maths) for JEE Main & Advanced

1. What are complex numbers and how are they represented?
Ans. Complex numbers are numbers that can be expressed in the form a + bi, where a and b are real numbers, and i is the imaginary unit, defined as the square root of -1. The real part is represented by 'a' and the imaginary part by 'b'. Complex numbers can be visualized on the complex plane, where the x-axis represents the real part and the y-axis represents the imaginary part.
2. How do you perform basic operations (addition, subtraction, multiplication, and division) on complex numbers?
Ans. To add or subtract complex numbers, simply combine their real parts and their imaginary parts separately. For multiplication, use the distributive property, remembering that i^2 = -1. For division, multiply the numerator and denominator by the conjugate of the denominator to eliminate the imaginary part in the denominator.
3. What is the significance of the quadratic formula and how is it derived?
Ans. The quadratic formula is used to find the roots of a quadratic equation in the form ax^2 + bx + c = 0. It is derived from the process of completing the square. The formula is x = (-b ± √(b^2 - 4ac)) / 2a. This formula provides a way to calculate the solutions (roots) of any quadratic equation, including those with complex roots when the discriminant (b^2 - 4ac) is negative.
4. How do complex roots relate to the quadratic equation, especially when the discriminant is negative?
Ans. When the discriminant of a quadratic equation is negative, it indicates that the equation has no real roots, but two complex roots. These roots are conjugates of each other and can be expressed in the form x = (-b ± i√(4ac - b^2)) / 2a. The presence of complex roots indicates that the graph of the quadratic function does not intersect the x-axis.
5. What are the applications of complex numbers in real-world scenarios?
Ans. Complex numbers are used in various fields such as engineering, physics, and applied mathematics. They play a crucial role in electrical engineering for analyzing AC circuits, in fluid dynamics, and in signal processing. Additionally, complex numbers are essential in solving differential equations and in computer graphics for transformations and rotations.
Related Searches

Previous Year Questions with Solutions

,

MCQs

,

practice quizzes

,

ppt

,

Exam

,

mock tests for examination

,

Free

,

shortcuts and tricks

,

Cheat Sheet: Complex Numbers and Quadratic Equation | Mathematics (Maths) for JEE Main & Advanced

,

Important questions

,

Semester Notes

,

Summary

,

Objective type Questions

,

past year papers

,

Viva Questions

,

Cheat Sheet: Complex Numbers and Quadratic Equation | Mathematics (Maths) for JEE Main & Advanced

,

study material

,

Extra Questions

,

Cheat Sheet: Complex Numbers and Quadratic Equation | Mathematics (Maths) for JEE Main & Advanced

,

pdf

,

Sample Paper

,

video lectures

;